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Given an unconditionally stable algorithm for solving the Cahn-Hilliard equation, we present a general
calculation for an analytic time step �� in terms of an algorithmic time step �t. By studying the accumulative
multistep error in Fourier space and controlling the error with arbitrary accuracy, we determine an improved
driving scheme �t=At2/3 and confirm the numerical results observed in a previous study �Cheng and Ruten-
berg, Phys. Rev. E 72, 055701�R� �2005��.
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The Cahn-Hilliard �CH� equation �1� models the phase
separation that occurs during the quench of a conserved sys-
tem from a high temperature isotropic phase into two distinct
phases at low temperatures. The pattern of the two phase
regions coarsens as the time � increases, i.e., the length scale
of these regions grows. At the later stages of this phase or-
dering process, the dynamics are dominated by a single
length scale, the pattern domain size L, which increases with
a power law in time �, L�����1/3 �2�. This power-law growth
implies that the motion of the domain walls becomes ex-
tremely slow at late times after a quench since a typical
domain wall speed is v�dL /d���−2/3, and a typical time
scale for the interface to move a distance of order the inter-
facial width � is of order � /v��2/3.

Since there is no known analytic solution of the Cahn-
Hilliard equation for random initial conditions, computa-
tional methods are necessary for investigation of such sys-
tems. The most straightforward approach is the Euler
algorithm, which must employ a time step �tEu���x�4 if
stability is to be maintained, where �x is the lattice spacing.
Additionally, for Cahn-Hilliard systems, to resolve the inter-
facial profile, one has to use a lattice spacing �x��. The
Euler fixed time step is suitable for update near the interface
but wastefully accurate in the bulk at late times. This has
been the main challenge of computer simulation of Cahn-
Hilliard systems. The recently developed unconditionally
stable algorithm �3–5� elegantly overcomes this difficulty. It
allows a mode-dependent effective time step �tef f—a larger
effective time step in the bulk as the domain size gets larger,
while keeping the effective time step finite near the interfa-
cial region �see Eq. �7��. Since the unconditionally stable
algorithm allows no constraints on time step, the main issue
is ensuring the accuracy of the simulation. In a previous
study �5�, Cheng and Rutenberg numerically demonstrated
that the error in correlations decreases monotonically as A
decreases down to A=0.001, where A is a prefactor in the
previous driving scheme �t=Ats

2/3 and ts is the structural
time �see below for a precise definition�. However, absence
of computational power prevents us from exploring the error
behavior for arbitrarily small A. For arbitrary accuracy, we
need to rigorously prove that the error can be made arbi-
trarily small.

To achieve this goal, we must first distinguish two quan-
tities generic to all numerical algorithms: analytic time step

�� �analytic time �� and algorithmic time step �t �algorith-
mic time t�. The former appears in the equation of motion
and represents the time step �time� of the system evolution
governed by the exact solution to the dynamical equations,
while the latter appears in the finite difference scheme and
represents the time step �time� of the system evolution by the
computational algorithms. We now briefly review these two
concepts and study why the distinction has been largely over-
looked thus far.

In Euler algorithm, it is not necessary to distinguish the
analytic time step and the algorithmic time step, since there
is a threshold on the time step, and they are always approxi-
mately identical �see the analysis below�. On the other hand,
semi-implicit algorithms have no such threshold. An uncon-
ditionally stable algorithm, an extension of the semi-implicit
method, allows for an arbitrarily large time step without en-
countering the numerical instabilities for suitably chosen pa-
rameters �as determined using a standard von Neumann sta-
bility analysis�. Although this method has been in use for
some time, there has been little analytic study about how to
obtain maximal speedup while controlling the accuracy. In-
deed, all the previous work known to us assumes no differ-
ence between the analytic time step and the algorithmic time
step—one can only increase the time step modestly and as-
sume the resulting error is small enough to be ignored.

In what follows, we perform a general calculation of the
analytic time step �� in terms of the algorithmic time step
�t, and show how this relationship allows one to choose a
driving scheme for arbitrary accuracy. Concomitantly, we
demonstrate that the driving scheme can be improved to �t
=At2/3. While the calculation presented is specifically appli-
cable to the Cahn-Hilliard equation, much of our analysis is
general and should guide subsequent studies of more com-
plicated systems. For simplicity but without loss of general-
ity, we restrict our analysis to two dimensions �2D�.

The Cahn-Hilliard equation can be written as

��

��
= �2 �F

��
= − �2�� + �2� − �3� , �1�

where the free energy functional is
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F �� d2x�	��	2 +
��2 − 1�2

4

 , �2�

and ��x ,�� is a conserved scalar field �such as an appropri-
ately scaled mass concentration� and the potential has a
double-well structure that the equilibrium values are at �
= ±1. To illustrate and distinguish the analytic time step from
the algorithmic time step, we first study the exact dynamics
of the Cahn-Hilliard systems Eq. �1� in Fourier space. At an
analytic time �, the system evolution after an analytic time
step �� is governed by the Taylor expansion:

�k�� + ��� = �k��� + �
n=1

	
�n�k

��n

��n

n!
. �3�

Using the results of the field derivatives in Fourier space Eq.
�15�, for a finite ��, one finds that all n
2 terms are negli-
gible compared with the n=1 term. So we obtain the tradi-
tional Euler finite difference scheme

�k�t + �tEu� = �k�t� + �tEu
��k

��
, �4�

where ��k /�� is the Fourier transform of �� /�� in Eq. �1�
and is a function of �k�t�. We see that the Euler algorithm
uses first order finite differences to approximate the solution
obtained by exact dynamics. On the other hand, an uncondi-
tionally stable algorithm is obtained by an appropriate semi-
implicit discretization of Eq. �1� in algorithmic time:

�t+�t + �1 − a1��t�2�t+�t + �1 − a2��t�4�t+�t

= �t − �t�2�a1�t + a2�
2�t − �t

3� . �5�

Unconditionally stability is obtained for the choices a1�2
and a2�0.5 �4�. Here, �t+�t represents the implicit terms and
�t represents the explicit terms. We can solve Eq. �5� directly
in Fourier space and obtain

�k�t + �t� = �k�t� + �tef f�k,�t�
��k

��
, �6�

where the k-dependent effective time step is

�tef f�k,�t� �
�t

1 − �t�k��a1 − 1� + �a2 − 1��k�
, �7�

and �k=−k2 is the Fourier-transformed Laplacian. The Euler
algorithm has a mode-independent fixed time step to update
the system in Fourier space, but, as Eq. �7� reveals, the un-
conditionally stable algorithm has a mode-dependent effec-
tive time step �tef f�k ,�t�. A direct comparison of Eqs. �3�
and �4� yields that the analytic time step �� is always a good
approximation of the algorithmic time step �tEu in Euler
algorithm. However, for the unconditionally stable algo-
rithm, a comparison of Eqs. �3� and �4� does not give a
straightforward relation between �� and �t, i.e., we do not
know what �� corresponds to �t. In what follows we explore
the relationship between these two time steps in the CH
equation, and the consequences this relationship has on the
accuracy of the solution method. The steps of our procedure
are shown in italics.

Calculate the analytic time and time step. We now calcu-
late the analytic time step �� in terms of an algorithmic
time step �t. Cahn-Hilliard systems are purely dissipative
systems — the energy density E monotonically decreases
with the analytic time with the relation E�−1/3 �2�. Without
such a relationship between a physical quantity and the ana-
lytic time, the analysis that is performed below cannot pro-
ceed, and thus progress in applying these methods to other
models hinges on the physical insights needed to obtain such
relationships �in this case the so-called “scaling hypothesis”�.
The analytic time is conveniently calculated in terms of the
monotonically decaying energy density E: �=B /E3, where
the prefactor B can be numerically determined by requiring
��=�t as �t→0 in the late-time scaling regime since our
unconditionally stable algorithm is arbitrarily accurate as
�t→0. Note that the calculation here is identical to the cal-
culation of the structural time ts in a previous study �5� since
the structural time is just another representation of the ana-
lytic time.

We can calculate the analytic time step by differentiating
� with respect to E:

�� = − 3B
�E

E4 = − 3�E
�4/3

B1/3 , �8�

and �E can be calculated by integrating �E from each Fou-
rier mode:

�E � �
0

1/�

d2k
1

�2��2� �F

��k
���k�

= − �
0

1/�

d2k
1

�2�k�2�tef f�k,�t�Tk, �9�

where the time derivative ��−k /��=−k2�F /��k from Eq. �1�
and ��k=�k�t+�t�−�k�t�=�tef f ��k /�� from Eq. �6� are
used, and Tk is the time-derivative correlation function
�2,6,7� and has a natural scaling form given by

Tk � ��k

��

��−k

��
� = �dL

d�
�2

h�kL� =
L0

2h�kL�
9�4/3 , �10�

where L=L0�1/3, h�x�=C /x is the 2D scaling function �7� as
x�1, and L0 and C are constants. We can then solve for �E
in Eq. �9� and for the analytic time step ��:

�� =
L0

2�t

6�B1/3�
0

	 dx

x

h�x�
1 + �t�a1 − 1�x2/L2

=
CL0

2�t

6�B1/3�
0

	 dx

x2�1 + D�2x2�
, �11�

where x=kL, D= �a1−1� /L0
2, and �=��t /�2/3. Solving the

integral, we obtain that,

�� = �t�1 − � � + O��2�� , �12�

where �=L0C�a1−1/ �12B1/3�. The above formula is the cen-
tral result of this Brief Report, and implies that ����t in
general. We now explore how to use this result to obtain an
accelerated algorithm.
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Scaling of field derivatives in Fourier space. In order to
explore the accuracy of accelerated algorithms in Fourier
space, it is necessary to know the scaling of field derivatives
both in the bulk �where k�1/L� and near the interface
�where k�1/��. The structure factor S�k�= �	�k	2�=L2g�kL�,
where g�kL��1 as k�1/L and g�kL���kL�−3�L−3 as k
�1/� �2�. Therefore we obtain

�k � ��1/3 as k � 1/L ,

�−1/6 as k � 1/� .
�13�

Previous studies �2,7� showed that ��k /��= �dL /d��k�k

as kL�1, so we obtain the form for the time-derivative
correlation function T�k�= �	��k /�t	2�= �dL /d��2k2�	�k	2�
= �dL /d��2h1�kL�, where the scaling function h1�kL�
=k2L2g�kL��1 as k�1/L, and h1�kL���kL�−1�L−1 as k
�1/�. Therefore we obtain

��k

��
� ��−2/3 as k � 1/L ,

�−5/6 as k � 1/� .
�14�

The generalization of higher order time-derivative corre-
lations is �	�n�k /��n	2���dL /d��2k2�	�n−1�k /�tn−1	2�, where
“�” indicates that generally the left-hand side may not ex-
actly be equal to the right-hand side. Applying this relation
will yield �	�n�k /��n	2���dL /d��2nL2−2nhn�kL�, where
hn�kL�=k2L2hn−1�kL���kL�2n−3�1 as k�1/L, and hn�kL�
��kL�2n−3�L2n−3 as k�1/�. Therefore we have

�n�k

��n � ��−n+1/3 as k � 1/L ,

�−2n/3−1/6 as k � 1/� .
�15�

The above expression is valid for n
0 for conserved two-
dimensional scalar order parameter�s�.

Determine the driving scheme for arbitrary accuracy.
Next, we determine the driving scheme for arbitrary accu-
racy in terms of the Fourier space error. Before we study the
error, we must first distinguish the error in the bulk and the
error near the interface. Equation �7� implies �tef f ��2/3 as
k�1/L and �tef f �const as k�1/�, we obtain that the ratio
of the single step field update with respect to the field
��k /�k���tef f ��k /��� /�k is of order O��−1/3� as k�1/L
and O��−2/3� as k�1/�. Therefore the error near the interface
is negligible compared with the error in the bulk, and we will
only study the error of those modes where k�1/L.

In Fourier space, we compare the field evolved by an
unconditionally stable algorithm to the exact dynamics
evolved by the same amount of energy. Using this criterion
we obtain the Fourier space single step error

��k
s � �k�t + �t� − �k�t + ���

= ��tef f − ���
��k

��
− �

n=2

	
�n�k

��n

��n

n!

�
1

1 + D�2 ���3 + O��4�� , �16�

where Eq. �12� and ��k /����−2/3 as k�1/L are used. The
values of � and D are finite. Assuming the algorithmic time

step �t=A��, then �=�A��/2−1/3. In order to obtain arbitrary
accuracy for ��k

s at arbitrarily large �, we require that �
=2/3 since ��2/3 will make the error uncontrolled �arbi-
trarily large� at arbitrarily large �, and ��2/3 will make the
algorithm wastefully accurate �error is always zero� at arbi-
trarily large �. A is then selected so that a desired accuracy is
obtained. Thus �t=A�2/3 and ��k

s �O��3��O�A3/2�.
For small A, Eq. �12� implies that �� t�1−��A�. There-

fore we can express the algorithmic time step �t in terms of
algorithmic time t:

�t = A�1 − ��A�2/3t2/3 � At2/3. �17�

Writing the driving algorithmic time step in terms of algo-
rithmic time t instead of the analytic time � has the compu-
tational advantage of avoiding an intermediate calculation of
� at each update, and thus makes the computational imple-
mentation more straightforward.

Accuracy in correlations. Lastly, we analytically confirm
the numerical results in a previous study �5� that the error in
structure factor scales as �A. The Fourier space single-step
error Eq. �16� will at worst accumulate with each update. For
a small A, evolving to � with time step �t=At2/3�A�2/3

����d� /dn requires a number of steps

n =� dn � �
0

� d�

A�2/3 =
3�1/3

A
. �18�

Therefore, at �, we obtain the upper bound on the Fourier
space multistep error:

��k
m � ��k

sn �
3A3/2�1/3

A
� L�A . �19�

We can use this to bound the error in the scaled structure
factor g�kL�= �	�k	2� /L2. As was investigated in our previous
numerical studies �5�, this quantity is simply the magnitude
of the difference between the structure factor obtained using
an unconditionally stable algorithm with one using the exact
dynamics at the same energy. As k�1/L �in the bulk�, we
obtain the maximum error:

�gmax �
2��k

m�k

L2 � �A , �20�

where �k�L as k�1/L is used. Equation �20� is precisely
the same as the results obtained in our previous, solely nu-
merical, study �5�. Thus the error produced in the bulk domi-
nates the total error, as it decays much slower than the error
produced near the interface. This error accumulates over
time and results in the error in the structure factor scaling as
�A.

In summary, we have analyzed numerical methods for
solving the Cahn-Hilliard equation. By explicitly distinguish-
ing the analytic and algorithmic time steps, we have devel-
oped a relation between them and have obtained an optimal
driving scheme �t=At2/3 under the requirement of arbitrary
accuracy. With this driving scheme, we have proved that the
upper bound of the multistep error in structure factor scales
as �A, a result obtained by numerical methods in a previous
study �5�. We note that the argument developed herein is
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founded, ultimately, on the physical relationship between the
domain size and the analytic time �based itself on the scaling
hypothesis�. For systems where such relationships exist, or
can be derived, we expect that this analysis should generalize
to other systems, such as the newly developed phase field

crystal model �8,9�. We hope to report this work in a subse-
quent paper.

M.C. would like to acknowledge Andrew Rutenberg for
valuable discussions on this work.
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